
nicerlab Documentation
Release 0.1

Peter Bult

Sep 24, 2017

Contents

1 User Documentation 3
1.1 Getting Started . 3
1.2 Data Structures . 4
1.3 I/O . 7
1.4 Utilities . 9
1.5 Scripts . 10

2 Index 11

i

ii

nicerlab Documentation, Release 0.1

The nicerlab package offers x-ray timing analysis tools for python. The goal of nicerlab is not to present a comprehen-
sive timing library, but rather to give a framework of efficient processing methods and convenient data classes. These
tools are intended to be used as building blocks for a customized python-based pipeline.

To achieve flexibility, the data objects of nicerlab are derived from numpy’s array object. This allows, for instance, a
Light curve object to be reshaped and binned as though it is simply a multi-dimensional ndarray.

The I/O operations of nicerlab use astropy to interface directly with fits formatted data.

To give a taste of what a nicerlab implementation might look like, the following code block reads a standard event list
and computes a power spectrum for each good time interval.

import nicerlab as ni

filename = "my_file.fits"

events, gti = ni.read_events_and_gti(filename)

light_curves = [
ni.make_light_curve(events, dt=1, tstart=t0, tstop=t1) for t0,t1 in gti

]

power_spectra = [
ni.make_power_spectrum(lc, tseg=64, collect='avg') for lc in light_curves

]

for i,pds in enumerate(power_spectra):
ni.io.write_pds(pds, "pds{}.fits".format(i))

Warning: While most of the current implementation will work as expected, nicerlab is still in development. Some

Contents 1

nicerlab Documentation, Release 0.1

2 Contents

CHAPTER 1

User Documentation

Getting Started

Obtaining nicerlab

The nicerlab package can be obtained through github. To obtain the source code use:

git clone https://github.com/peterbult/nicerlab.git

Installing nicerlab

The recommended way to install nicerlab is to use pip. Navigate to the project folder, and from the command line:

make install

This will use pip to install the package, as well as all required dependencies. Alternatively, one can also use pip
directly to install as:

pip install -r requirements.txt
pip install .

Testing

Most nicerlab modules have associated test functions. These tests can be run using:

make test

or alternatively, using pytest directly:

pytest test/

3

nicerlab Documentation, Release 0.1

License

The nicerlab package is licensed using the MIT license.

Copyright (c) 2017 Peter Bult <https://github.com/peterbult>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Contributing

Contributions through github are welcome.

Data Structures

Event list

An Eventlist represents a list of photon arrival times. This object is a ndarray subclass with the following added
attributes:

tstart The start time of the observation
tstop The stop time of the observation
MJD The observation start time in MJD

If a tstart or tstop time is not explicitly defined, the respective smallest and largest value in the array of arrival
times will be used instead. The MJD of an Eventlist is zero unless explicitly defined.

Because an Eventlist is just an ndarray standard numpy methods can be used to manipulate the data. Consider
the following example where we generate some random data and proceed to sort the Eventlist on time:

>>> import numpy as np
>>> import nicerlab as ni
>>> data = np.random.uniform(10,20,500)
>>> evt = ni.Eventlist(data, tstart=10, tstop=20)
>>> evt = np.sort(evt)
>>> evt.info()
Eventlist:
> counts......: 500
> exposure....: 10 seconds
> start/stop..: 10 / 20
> MJD.........: 0

4 Chapter 1. User Documentation

http://opensource.org/licenses/MIT
https://github.com/peterbult

nicerlab Documentation, Release 0.1

Note: Event list data should generally be time ordered, however, this is not a strict requirement for nicerlab. Data
contained in an Eventlist object is allowed to be out-of-order, and routines operating on an Eventlist will return
the correct ouput either way.

Light curve

A Lightcurve object is an array of event counts in equidistant time bins. This object is a ndarray subclass with the
following added attributes:

dt Time bin width in seconds
tstart The start time of the observation
tstop The stop time of the observation
MJD The observation start time in MJD

The bin width will default to 1 if no value is provided. Like for the Eventlist, if the tstart or tstop time is
not explicitly defined, the respective smallest and largest value in the array of arrival times will be used instead. The
MJD of an Eventlist is zero unless explicitly defined.

In addition to the extra attributes, the Lightcurve object also has special member functions:

timespace Generate an array of times
mjdspace Generate an array of MJD times

A Lightcurve can be constructed manually from any iterable list of counts as:

>>> from nicerlab.lightcurve import Lightcurve
>>> counts = [11, 12, 10, 8, 15, 12]
>>> lc = Lightcurve(counts, dt=2, tstart=0, mjd=55750)
>>> lc
Lightcurve([11, 12, 10, 8, 15, 12])
>>> lc.timespace()
array([0., 2., 4., 6., 8.])
>>> np.sum(lc.reshape(-1,2), axis=1)
Lightcurve([23, 18, 27])

Warning: The Lightcurve constructor will not check if the combination dt/tstart/tstop are self consistent. The
array-size/bin-width always take precedence in determining the time axis of the light curve.

An example:

>>> import numpy as np
>>> import nicerlab as ni
>>> import matplotlib.pyplot as plt
>>> data = np.sort(np.random.uniform(0,12,500))
>>> evt = ni.Eventlist(data, tstart=0, tstop=12)
>>> lc = ni.make_light_curve(evt, dt=0.25) / 0.25
>>> plt.plot(lc.timespace(), lc);
>>> plt.xlabel('MET (s)');
>>> plt.ylabel('count-rate (ct/s)');
>>> plt.show()

1.2. Data Structures 5

nicerlab Documentation, Release 0.1

Power density spectrum

A Powerspectrum object is an array of powers densities. Note that the object does not care about what normalization
is used. By default the make_power_spectrum() will use the Leahy normalization. The following attributes have been
added to the object

df Frequency bin width in Hertz
tstart The start time of the observation
tstop The stop time of the observation
MJD The observation start time in MJD
stack The number of FFT segments in the spectrum

Additionally it has a special member function

freqspace Generate an array of frequencies

Spectrum

A spectrum is an PI spectrum object.

6 Chapter 1. User Documentation

nicerlab Documentation, Release 0.1

I/O

Read

Reading a generic fits file

Example:

>>> import nicerlab as ni
>>> filename = 'data_cl.evt'
>>> table, keys = ni.io.read_from_fits(
... filename, ext='EVENTS', cols=['TIME', 'PI'],
... keys=['TSTART', 'TSTOP', 'OBJECT'],
... as_table=True)
>>> keys
{'TSTART': 523327317.6109142, 'TSTOP': 523345136.3998488, 'OBJECT': 'TOO'}
>>> table
array([[5.23327318e+08, 6.11000000e+02],

[5.23327319e+08, 6.23000000e+02],
[5.23327320e+08, 3.02000000e+02],
...,
[5.23345135e+08, 5.99000000e+02],
[5.23345136e+08, 2.89000000e+02],
[5.23345136e+08, 2.83000000e+02]])

Alternatively we could have also just used astropy as:

>>> from astropy.table import Table
>>> tb = Table.read(filename, format='fits', hdu=1)['TIME', 'PI']
>>> tb
<Table length=5946>

TIME PI
float64 int32

------------- -----
523327317.829 611
523327319.446 623
523327320.199 302

... ...
523345135.417 599
523345135.787 289
523345136.275 283
>>> keys = {k: tb.meta[k] for k in ['TSTART', 'TSTOP', 'OBJECT']}
>>> keys
{'TSTART': 523327317.6109142, 'TSTOP': 523345136.3998488, 'OBJECT': 'TOO'}

However, this will load all columns from the fits table into memory, which is sometimes unwieldy. In any case the
read_from_fits() function is just a building block used to construct a set of higher level convience functions,
and should seldomly be used directly.

Reading event data

Events only

If only the event arrival times are of interest these can be obtained by invoking the fits interface as:

1.3. I/O 7

nicerlab Documentation, Release 0.1

>>> table = ni.io.read_from_fits(filename, ext='EVENTS', cols=['TIME'])

However, the table will be a 2-dimensional numpy array with only one defined column, hence:

>>> events = table[:,0]

What’s more, we will actually want to construct an Event list object with the proper attributes set. To that end a
convience function has been implemented that does all this for you:

>>> evt = ni.io.read_events(filename)
>>> evt.info()
Eventlist:
> counts......: 5946
> exposure....: 17818.788934648037 seconds
> start/stop..: 523327317.6109142 / 523345136.3998488
> MJD.........: 57967.02988188558

Events and ...

For convience a number of combination functions are implemented that read event arrival times and some other datum
from the fits table:

>>> evt, gti = ni.io.read_events_and_gti(filename)
>>> gti
array([[5.23327318e+08, 5.23329114e+08],

[5.23333245e+08, 5.23334856e+08],
[5.23338946e+08, 5.23340281e+08],
[5.23344887e+08, 5.23345136e+08]])

>>>
>>> tb = ni.io.read_events_and_pi(filename)
>>> tb
array([[5.23327318e+08, 6.11000000e+02],

[5.23327319e+08, 6.23000000e+02],
[5.23327320e+08, 3.02000000e+02],
...,
[5.23345135e+08, 5.99000000e+02],
[5.23345136e+08, 2.89000000e+02],
[5.23345136e+08, 2.83000000e+02]])

Reading good time intervals

You can also read the GTI table only:

>>> table = ni.io.read_from_fits(filename, ext='GTI', cols=['START', 'STOP'])

which has its own convience function:

>>> gti = ni.io.read_gti(filename)
>>> gti
array([[5.23327318e+08, 5.23329114e+08],

[5.23333245e+08, 5.23334856e+08],
[5.23338946e+08, 5.23340281e+08],
[5.23344887e+08, 5.23345136e+08]])

8 Chapter 1. User Documentation

nicerlab Documentation, Release 0.1

Write

Write power spectrum

Write a single Power density spectrum object to a fits file

ni.io.write_pds(pds, "pds.fits")

If the pds has multiple rows, then this works too.

Write spectrum

Write a Spectrum object as an OGIP compatible fits file.

ni.io.write_spectrum(spec, "pi_spectrum.fits")

Utilities

Utils

The utils module implements a set of convenience functions that are used througout the library.

• find_first_of: This function will find the index of the first element in an array that exceeds a given threshold
value. The function is used a number of times to dissect light curve or event data into discrete blocks.

• truncate: This function will

GTI tools

The GTI Tools subpackages offers a set of functions that manage good time intervals. Available tools are

• durations – computes the GTI exposures

• trunctate – truncate a list of GTIs to a lower and/or upper boundary in time.

• good_to_bad – convert between good time and bad time

• bad_to_good – convert between good time and bad time

• merge – merge two GTI lists using and/or logic

Ftools

The Ftools subpackage wraps around the heasoft FTOOLS and allows the user to call a number of operations on a
fits file. These ftool operations are performed in a subproccess outside the python environment, but can be useful in
preparing or cleaning the data for analysis.

1.4. Utilities 9

nicerlab Documentation, Release 0.1

Scripts

ni-lightcurve

The ni-lightcurve script is a simple nicerlab implementation for constructing light curves from event files. Basic usage
is

ni-lightcurve evt.meta

By default ni-lightcurve will output count-rates as a function of MJD using a 16 second time resolution. All data is
written to a single ASCII file named lc.dat, with a continuous block for each good time interval. Good time intervals
are read from the fits file.

--dt Set the time resolution
--clobber Overwrite the outputfile is it exists
--met Format the time axis as mission-elapsed time
--output Set the output file name
--help Display usage instructions

gti-select

The gti-select tool gives an interactive method for shaping an event file’s good time interval table. Basic usage is as

gti-select evt.meta --dt 1

--dt Set the time resolution
--clobber Overwrite the eventfile internal GTI table
--help Display usage instructions

After initialization gti-select will iterate through the event files listed in the metafile. For each event file it will construct
a light curve at the requested resolution and produce a plot with the current GTI’s overlayed. One can then use the
mouse to shape the good time intervals, and the terminal to move to the next event file. The available controls are

left-mouse Add bad time
right-mouse Add good time
type ‘undo’ Reset the current event file
type ‘quit’ Quit without saving current file
type <enter> Save and go to next file

10 Chapter 1. User Documentation

CHAPTER 2

Index

• genindex

• modindex

• search

11

	User Documentation
	Getting Started
	Data Structures
	I/O
	Utilities
	Scripts

	Index

